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Abstract The Mancha3D code is a versatile tool for numerical simulations of mag-
netohydrodynamic processes in solar/stellar atmospheres. The code includes non-ideal
physics derived from plasma partial ionization, a realistic equation of state and radia-
tive transfer, which allows performing high quality realistic simulations of magneto-
convection, as well as idealized simulations of particular processes, such as wave prop-
agation, instabilities or energetic events. The paper summarizes the equations and meth-
ods used in the Mancha3D code. It also describes its numerical stability and parallel
performance and efficiency. The code is based on a finite difference discretization and
memory-saving Runge-Kutta (RK) scheme. It handles non-ideal effects through super-
time stepping and Hall diffusion schemes, and takes into account thermal conduction
by solving an additional hyperbolic equation for the heat flux. The code is easily con-
figurable to perform different kinds of simulations. Several examples of the code usage
are given. It is demonstrated that splitting variables into equilibrium and perturbation
parts is essential for simulations of wave propagation in a static background. A per-
fectly matched layer (PML) boundary condition built into the code greatly facilitates a
non-reflective open boundary implementation. Spatial filtering is an important numer-
ical remedy to eliminate grid-size perturbations enhancing the code stability. Parallel
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performance analysis reveals that the code is strongly memory bound, which is a nat-
ural consequence of the numerical techniques used, such as split variables and PML
boundary conditions. Both strong and weak scalings show adequate performance up till
several thousands of CPUs.

Keywords: MHD code, realistic simulations, split variables, code stability and effi-
ciency

1. Introduction

Stellar interiors and atmospheres are intrinsically multi-scale environments. Subject
to gravitational force, the plasma parameters are strongly stratified with stellar radial
distance. Stellar plasmas are dynamic on a wide variety of scales, ranging from scales of
short-lived transients and high-frequency phenomena associated to the energy dissipa-
tion (high-frequency waves, shock wave fronts, current layers, reconnection sites, etc),
to long scales associated to the time of evolution of supergranulation, active regions, or
stellar rotation. Theoretical-analytical studies of such environments are only practical
in some limited cases. Already for decades, numerical simulations have been a useful
tool for modeling complex plasma interactions, making it possible to obtain a global
and precise picture of the dynamics and energy propagation through stellar interiors
and atmospheres.

Nowadays a large number of computer codes are used for various problems of
magnetized plasma dynamics. Some of these codes are generic-purpose codes, as, for
example, PENCIL (Collaboration et al., 2021), MPI-AMRVAC (Xia et al., 2018; Kep-
pens et al., 2023), Athena (Stone et al., 2008) or FLASH (Fryxell et al., 2000). Other
codes are specifically designed to model particular problems. For example, in the area
of astrophysics, several groups have advanced codes to perform realistic simulations of
magneto-convection in solar/stellar atmospheres, such as CO5BOLD (Freytag, 2013),
MURaM (Vögler et al., 2005), Bifrost (Gudiksen et al., 2011), SolarBox (Wray et al.,
2015), RAMENS (Iijima and Yokoyama, 2015), or Mancha3D (Khomenko et al., 2018,
discussed in this paper). Many of the realistic magneto-convection models extend from
deep sub-photospheric layers till high up in the corona (Carlsson et al., 2016; Rempel,
2017; Iijima and Yokoyama, 2017). In this regard, Bifrost provided one of the first
self-consistent models of solar coronal heating by Ohmic dissipation, where the role
of Ohmic dissipation was played by hyper-diffusion terms (Gudiksen and Nordlund,
2005).

There is a group of codes that have been particularly configured to perform realistic
large-scale stellar modeling of the dynamics of the convection zone, dynamos and
differential rotation, see very recent applications by PENCIL (Käpylä, 2023), R2D2
(Hotta, Kusano, and Shimada, 2022), ASH (Brun et al., 2022), or RAMSES (Canivete
Cuissa and Teyssier, 2022). This kind of simulations frequently uses their own set of
assumptions, such as reduced sound speed technique, inelastic approximation, etc.

In stellar atmospheres, the interaction of plasma and radiation plays a crucial role,
with radiation being the main cooling mechanism. Realistic codes include advanced
radiative transfer calculations, integrating the solution of the radiative transfer equation
under several assumptions that allow to speed up the calculations. Among the various
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codes, only a few take into account departures from local thermodynamic equilibrium
(LTE) or time-dependent ionization (Gudiksen et al., 2011; Przybylski et al., 2022).
Some recently implemented features consist in the inclusion of non-ideal terms derived
from the presence of a large amount of neutrals in the solar atmosphere (ambipolar
diffusion, modified Hall term, Biermann battery term) (Cheung and Cameron, 2012;
Martı́nez-Sykora, De Pontieu, and Hansteen, 2012; Khomenko and Collados, 2012). In
this regard, Mancha3D was one of the first codes to take these effects into account for
realistic 3D solar magneto-convection simulations (Khomenko et al., 2018), suggesting
they could play a relevant role for chromospheric heating.

The codes mentioned above use a single-fluid quasi-magnetohydrodynamic (MHD)
formalism. Several newer codes have implemented a multi-fluid formalism for solar
plasmas, where the different plasma components (such as neutral and charged compo-
nents) are evolved separately as independent fluids interacting by collisions (Hillier,
Takasao, and Nakamura, 2016; Lukin et al., 2016; Martı́nez-Gómez, Soler, and Ter-
radas, 2017; Lani et al., 2017; Popescu Braileanu et al., 2019; Wójcik, Murawski,
and Musielak, 2019; Martı́nez-Sykora et al., 2020; Popescu Braileanu and Keppens,
2022). This different class of codes still lack realistic physics, and will not be discussed
here. The single-fluid formalism is conceptually easier since the numerical methods for
the solution of the MHD system of equations have been well developed. Nevertheless,
ambipolar and Hall terms require a special treatment to assure the numerical stability
and to speed up the calculations (Arber et al., 2001; Tóth, Ma, and Gombosi, 2008;
González-Morales et al., 2018; Nóbrega-Siverio et al., 2020; Popescu Braileanu and
Keppens, 2021).

While realistic simulations have proven to be an extremely useful tool, their com-
plexity is frequently similar to actual observations, making it difficult to disentangle
between different physical processes to explain particular phenomena. A different class
of simulations is frequently used instead, classified as idealized ones. In idealized sim-
ulations, one is only interested in performing a controlled experiment with a limited
number of the physical ingredients. Simulations of waves, propagating through a static
background (as, e.g., Hasan et al., 2003; Vigeesh, Hasan, and Steiner, 2009; Bogdan
et al., 2003; Fedun, Shelyag, and Erdélyi, 2011; Santamaria, Khomenko, and Collados,
2015; Liakh, Luna, and Khomenko, 2021, to name a few) and instabilities in stellar
atmospheres (e.g., Terradas et al., 2008; Hillier et al., 2012; Antolin, Yokoyama, and
Van Doorsselaere, 2014) are examples of this kind of simulations. Idealized simulations
have been helpful in answering questions about wave energy transfer and dissipation
through solar/stellar atmospheres, chromospheric heating by waves and instabilities
(see recent reviews by Hillier, 2018; Srivastava et al., 2021).

As follows from the discussion above, many algorithms and codes for astrophysical
plasma simulations are available, with a variety of numerical implementations. Our
primary goal in developing Mancha3D1 is to produce a versatile code that is easily
configurable for simulations with idealized and controlled setups to realistic simula-
tions, such as the one of solar/stellar magneto-convection. Therefore, the code presents a

1The name Mancha3D goes back to the earliest version of the code that was designed to simulate propagation
of waves in sunspots (“mancha solar” means sunspot in Spanish). Written in all capitals, it is an acronym
for Multi-fluid (-purpose, -physics, -dimensional) Advanced Non-ideal MHD Code for High resolution
simulations of the solar Atmosphere.
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modular structure and a user switches on/off a given functionality with a number of pre-
processor commands. The ideal and non-ideal modules of the code share the same core
integration scheme. A user does not need to modify the core of the code to switch be-
tween the setups, but can do it through external initial and boundary condition modules.
Mancha3D is not the first or only code that uses its particular numerical algorithms,
but according to our experience, precise implementation details are important and pro-
duce differences between the codes, in a more or less substantial manner. Therefore,
Mancha3D has been designed to be an easy to use, configure, develop, and maintain
code, which can be expanded to add more physics. The code solves the time-dependent
equations of the non-ideal MHD on a 3D Cartesian grid, and it can solve either full
or linearized MHD equations. The code is written in modern FORTRAN language,
fully parallelized with MPI, using spatial domain decomposition; input/output files are
handles via parallel HDF5.

The original version of the code solver and algorithm has been described and vali-
dated with multiple tests in Felipe, Khomenko, and Collados (2010). Compared to that
work, many crucial changes have been done to the code, which justifies the need for the
current publication. Several optimizations of the modular structure, efficiency and par-
allelization have been performed. Realistic modules have been added for calculations
using a tabulated equation of state (EOS), accounting for the chemical composition
of a stellar atmosphere (Vitas and Khomenko, 2015), see also Perdomo Garcı́a et al.
(2023), as well as a module for solving the radiative transfer equation (RTE) in LTE
approximation using opacity binning (partially described in Khomenko et al., 2018).
Non-ideal processes such as ambipolar diffusion (caused by the presence of neutrals)
and the Hall and Biermann battery effects have been included using time efficient nu-
merical methods such as super-time-stepping (STS) or Hall diffusion scheme (HDS)
(González-Morales et al., 2018). Together with the radiative transfer module, it allows
performing realistic simulations of solar/stellar atmospheres to be directly compared
with observations. The recent implementation of a thermal conduction module en-
ables extending our modeling to the corona (Navarro et al., 2022). Furthermore, unlike
many specialized astrophysical codes, Mancha3D is freely available via public Gitlab
repository, https://gitlab.com/Mancha3D.

Starting from the studies of magneto-acoustic and Alfvén waves in sunspots (Khomenko
and Collados, 2006, 2009; Felipe, Khomenko, and Collados, 2010, 2011; Krishna Prasad,
Jess, and Khomenko, 2015; Zhao et al., 2016), and other magnetic structures (Khomenko,
Collados, and Felipe, 2008; Santamaria, Khomenko, and Collados, 2015; Santamaria
and Van Doorsselaere, 2018; Riedl, Van Doorsselaere, and Santamaria, 2019; Sieyra
et al., 2022), the Mancha3D code has successfully been applied for different setups
including thorough investigation of non-ideal MHD effects due to neutrals (Khomenko
and Collados, 2012; Khomenko et al., 2014b; Shelyag et al., 2016; MacBride et al.,
2022), realistic magneto-convection of the solar atmosphere (Khomenko et al., 2017,
2018; González-Morales et al., 2020), large-amplitude oscillations of solar prominences
(Luna et al., 2016; Liakh, Luna, and Khomenko, 2020, 2021, 2023; Luna and Moreno-
Insertis, 2021), or solar seismology (Felipe et al., 2016; Felipe, Braun, and Birch,
2017; Felipe et al., 2020). All these works have proved the code capability and its
competence to solve complex physical problems, however many technical aspects of
the Mancha3D code have not been reported. The aim of this paper is to summarize the
capabilities of the code, describe its properties, together with accurate analyses of its
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numerical stability and efficiency. The paper is organized as follows. Section 2 presents
the equations used in the code and Sect. 3 the numerical methods and stabilization
techniques. Sections 2.6 and 3.7 emphasize the importance of the split variables and
the PML boundary conditions. Parallel efficiency is thoroughly studied and described
in Section 4. The paper is completed with the conclusions and future plans in Section
5.

2. Equations

The Mancha3D code solves the following non-ideal MHD equations, written in conser-
vative form2:

∂ρ

∂t
+ ∇ · (ρv) =

(
∂ρ

∂t

)
diff
, (1)

∂ρv
∂t
+ ∇ ·

[
ρvv +

(
p +

B2

2µ0

)
I −

BB
µ0

]
= ρg + S(t) +

(
∂ρv
∂t

)
diff
, (2)

∂etot

∂t
+ ∇ ·

[
v
(
etot + p +

B2

2µ0

)
−

B(v · B)
µ0

+
(ηA + η)J⊥ × B

µ0
(3)

−
∇pe × B

eneµ0
+ q

]
= (ρg + S(t)) · v + QR +

(
∂etot

∂t

)
diff
,

∂B
∂t
= ∇ ×

[
v × B − ηJ − ηAJ⊥ +

∇pe

ene
− ηH

(J × B)
|B|

]
+

(
∂B
∂t

)
diff
, (4)

where ρ is the density, v is the velocity, p is the gas pressure, pe is the electron pressure
(see Sect. 2.5.3), ne is the electron number density, B is the magnetic field, I is the
identity tensor, g is the gravitational acceleration, q is the heat flux vector, and the non-
ideal terms are described later in this section. The dot ’·’ represents the scalar product,
while the notation ’BB’ (or ’vv’) stands for the tensor product. The term S(t) in the
momentum and energy equations represents a time-dependent external force. The term
QR stands for the radiative energy exchange. The total electric current, and the current
perpendicular to the magnetic field are defined as

J =
∇ × B
µ0
, (5)

J⊥ = −
(J × B) × B

B2 . (6)

Artificial diffusion terms, marked as ()diff , have been added to the conservation equa-
tions for the stability of the simulations. The diffusion terms in the momentum, energy
and induction equations have their physical counterparts, but the one in the continuity
equation does not. These terms will be described in more detail below.

2Everywhere in the paper we use the international SI units.
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The energy conservation equation is written in terms of the total energy per unit
volume,

etot = eint +
1
2
ρv2 +

B2

2µ0
, (7)

where eint is the internal energy per unit volume that is defined by the equation of state
(see Sect. 2.5). Alternatively to the total energy equation, Mancha3D can solve the
equation of conservation of the internal energy,

∂eint

∂t
+ ∇ · (veint + q) + p∇ · v = (8)

ηJ2 + ηAJ⊥2 − J ·
∇pe

ene
+ QR +

(
∂eint

∂t

)
diff
.

When the magnetic pressure is much larger than the gas pressure, recovering thermal
energy (eint) or pressure from the total energy (etot) can lead to numerical errors. Hence,
in the runs where a large portion of the simulation domain contains plasma with β ≪ 1,
Mancha3D can be set to use the equation of conservation of the internal energy, Eq. 8.

In order to handle small densities in a numerically stable way, the continuity equation
can be solved in terms of logarithmic density, φ ≡ ln ρ,

∂φ

∂t
+ ∇ · v + v · ∇φ = ∇ · (ν∇φ) + ν(∇φ)2, (9)

where ν is the artificial diffusivity coefficient, defined in Eq. 82 for the linear density,
see Sect. 3.3.

2.1. Treatment of the heat conduction

The effects of thermal conduction can be represented by adding the divergence of a heat
flux vector q either to the right hand side of Eq. 3,

∂etot

∂t
= [. . . ] − ∇ · q , (10)

or to the right hand side of Eq. 8 if the internal energy is evolved instead of the to-
tal energy. The classical heat flux description (with expansions around a Maxwellian
distribution function) was addressed for example by Braginskii (1965); Spitzer (1956);
Schunk (1977); Balescu (1988); Zhdanov (2002); Hunana et al. (2022) and references
therein. For general HD and MHD problems, the conductivities can be set to constant
values for isotropic and anisotropic cases. With respect to the magnetic field the heat
flux q = −κ∇T can be decomposed as follows

q = −κ∥∇∥T − κ⊥∇⊥T + κ×b̂ × ∇⊥T , (11)

where ∇∥ = b̂(b̂ · ∇) gives the parallel projection to the magnetic field, ∇⊥ = ∇ − ∇∥
gives the projection in the perpendicular direction, and the last term is the projection in
the transverse direction.

The model derived by Braginskii (1965) takes into account the dependency on the
ratio of the collisional to cyclotron frequencies of the plasma. The model transitions
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smoothly between field-aligned conductivity and isotropic conductivity for regions with
a low or zero magnetic field or collisionally dominated. The joint contribution from ions
and electrons is

κ∥ = κ
e
∥
+ κi∥ , (12)

κ⊥ = κ
e
⊥ + κ

i
⊥ , (13)

κ× = κ
e
× + κ

i
× , (14)

where the lower and upper indices ”e” and ”i” refer to electrons and ions. The conduc-
tivities are given by

κe
∥
= 3.1616

kB pe

νeime
, (15)

κe⊥ =
kB pe

νeime

4.664x2
e + 11.92

x4
e + 14.79x2

e + 3.77
, (16)

κe× =
kB pe

νeime
xe

5
2 x2

e + 21.67

x4
e + 14.79x2

e + 3.77
, (17)

κi∥ = 3.906
kB pi

νiimi
, (18)

κi⊥ =
kB pi

νiimi

2x2
i + 2.645

x4
i + 2.70x2

i + 0.677
, (19)

κi× =
kB pi

νiimi
xi

5
2 x2

i + 4.65

x4
i + 2.70x2

i + 0.677
. (20)

where pe, pi, me and mi are the pressure and mass of each species and kB is the Boltz-
mann constant. The collisional frequency of ion-ion collisions is νii and of electron-ion
collisions is νei. The quantities xe and xi represent the ratio between cyclotron frequency
(Ω) and collision frequency (ν) for electrons and ions, respectively

xe =
Ωe

νei
; xi =

Ωi

νii
, (21)

and the collision frequencies are specified in Sect. 2.2, see also (Khomenko et al.,
2014b). The Braginskii model recovers Spitzer’s expression for electron heat flux in
the strongly magnetized limit. In the Spitzer’s case the constant is 3.203 instead of
3.1616 in Eq. (15).

The thermal conduction module in Mancha3D offers different heat flux models that
can be solved with two alternative numerical schemes, it is thoroughly described in
Navarro et al. (2022). The first option involves the standard explicit integration of
the equations including the parabolic term (∇ · q) in the energy equation. However, in
conditions of high plasma temperatures, like the ones in the solar corona, the integration
time step due to the thermal conduction becomes considerably more restrictive than the
MHD time step and simulations can be computationally expensive. To overcome this
difficulty, the second scheme resolves an additional hyperbolic equation for the parallel
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component of the heat flux, which is the problematic one in the case of astrophysical
plasma. This allows the use of larger values of the time step and reduces the cost of the
simulations. To do this we rewrite the heat flux

q = −q∥b̂ − κ⊥∇⊥T + κ×b̂ × ∇⊥T , (22)

and introduce a hyperbolic equation for its evolution,

∂q∥
∂t
=

1
τ

(
− fsatκ∥

(
b̂ · ∇

)
T − q∥

)
. (23)

The factor fsat sets the saturation of the conductive heat flux, reducing its value for
stability purposes, and τ is the relaxation time set to τ = 4dt. Following Fisher, Canfield,
and McClymont (1985) and Meyer, Balsara, and Aslam (2012) the saturation factor is
written as

fsat =

1 + |κ∥
(
b̂ · ∇

)
T |

1.5ρc3
S


−1

, (24)

where cS =
√
γp/ρ denotes the speed of sound and γ is the adiabatic index.

2.2. Non-ideal terms

The system of Eqs. 1–4 contains the Ohmic and ambipolar diffusion terms, Hall term
and Biermann battery term, with coefficients calculated as

η =
αe

(ene)2 ; ηA =
ξ2nB2

αn
; ηH =

|B|
ene
. (25)

Here ξn = ρn/ρ is the fraction of neutrals, ρn the neutral mass density, and e the electron
charge. The neutral and electron collisional parameters, αn and αe, are defined as

αn =

N∑
β=1

ρeνenβ +

N∑
α=1

N∑
β=1

ρiανiαnβ , (26)

αe =

N∑
α=1

ρeνeiα +

N∑
β=1

ρeνenβ . (27)

Here, following Khomenko et al. (2014a), the summation goes over N neutral species
(index nβ) and N singly ionized species (index iα) composing the plasma. Accordingly,
ρe is the electron mass density and ρiα the mass density of ions of species α. Expressions
for the ion-neutral (νiαnβ ) and electron-neutral (νenβ ) collisional frequencies entering
the collisional parameters are taken from Spitzer (1956). For the collisions between
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electrons and ions (νeiα ), we use the expressions from (Braginskii, 1965):

νiαnβ = nnβ

√
8kBT
πmiαnβ

σin, (28)

νenβ = nnβ

√
8kBT
πmenβ

σen, (29)

νeiα =
nee4 lnΛ

3ϵ20 m2
e

(
me

2πkBT

)3/2

, (30)

where miαnβ = miαmnβ/(miα +mnβ ), menβ = memnβ/(me +mnβ ) are the reduced masses, me

the electron mass, nnβ the number density of neutrals of type β, and ϵ0 the permittivity of
free space. The cross sections for a weakly ionized plasma assuming elastic collisions
between solid spheres are σin = 5 × 10−19m2 and σen = 10−19m2 (Huba, 2013). The
Coulomb logarithm, lnΛ, is defined as

lnΛ =
12π(ϵ0kBT )3/2

n1/2
e e3

. (31)

The computation of the η coefficients, Eqs. 25, requires the knowledge of the electron
number density and the number densities of different neutrals and ions composing the
plasma. These are not the variables evolved in the MHD equations, Eqs. 1–4. The partial
number densities in Mancha3D are computed from the equation of state, see Sect. 2.5.

2.3. Radiative transfer equation

2.3.1. Basics

Interactions between radiation and matter are of critical importance for the modeling of
stellar atmospheres (Hubeny and Mihalas, 2014; Rutten, 2003). For an MHD model in
LTE, these interactions are fully described by a net radiative energy exchange QR that
appears as a source term in the energy equation (Eq. 3). The QR term is defined either
based on the radiative flux F or on the mean radiative intensity J,

QF
i = −∇ · Fi, (32)

or

QJ
i = 4πκi ρ (Ji − S i), (33)

where κi is the absorption coefficient per unit mass, S i is the source function, and the
index i stands either for the radiation frequency ν or for a discrete index of a statistically
representative frequency group. The flux, Fi, and the mean intensity, Ji, are computed
from the known spatial and angular distribution of the specific intensity of the radiation
Ii:

Fi =

∫
4π
µIi(µ)dω, (34)
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Ji =
1

4π

∫
4π

Ii(µ)dω, (35)

where µ = cos θ gives the direction of the ray, and the integration is done over the
solid angle ω. The specific intensity is, on the other hand, defined as the proportionality
coefficient between the energy transported by radiation through a given area in a given
direction and time interval, and at a given frequency (e.g. Eq. 2.1 of Rutten, 2003). The
radiation, Ii, is evaluated along the ray, so that it is a function of the distance along
the ray s only. The definition of Ii along the ray leads directly to the radiative transfer
equation (RTE) in the form:

dIi(s)
κi(s)ρ(s)ds

= S i(s) − Ii(s) (36)

where S i(s) is the source function set by the Planck function in LTE. Due to the intrinsic
non-locality of the radiation field and the complexity of the opacity function (κ), the
solution of RTE presents a challenging problem even when LTE is assumed.

2.3.2. Numerics

In Mancha3D the RTE is solved using the short-characteristics (SC) method (Miha-
las, Auer, and Mihalas, 1978; Olson and Kunasz, 1987; Kunasz and Auer, 1988). The
method relies on computing the intensity contributions along each ray on short segments
or characteristics using the formal solution between two adjacent points, the upwind (U)
point in which the intensity is already known and the local (L) point in which it is being
evaluated:

I(τL) = I(τU)e−∆τUL +

∫ L

U
S (τ) e−(τL−τ) dτ, (37)

where S (τ) is the source (Planck) function approximated by a polynomial on the UL
segment and τUL is the difference between the optical depth in the points L and U
computed as:

∆τUL =

∫ L

U
κ(s)ρ(s)ds. (38)

In that way, the local intensity I(τL) depends on all intensities upwind along the ray
from the point L through the first term in Eq. 37 and on the local contributions to the
radiation field between the points U and L through the second term. In the SC method,
in more than one dimension, the U point lies between points of the computational grid
and, therefore, the intensity in that point has to be computed by interpolation of the
intensities in the adjacent points. The same applies to other values that are required at
the U point, i.e. κU, ρU and S U. The required interpolation is one-dimensional if the ray
is traced in 2D, and it is two-dimensional if it is traced in 3D. In the public version of
Mancha3D we use the linear and bilinear interpolation formulae for these two cases,
respectively. Because of the need for the interpolation in the U points, the SC method
is more numerically diffusive than the long-characteristics variant of the formal solver
(Peck, Criscuoli, and Rast, 2017). However, the SC method is particularly suitable for
implementation in 3D geometry where parallelization is done by domain decomposi-
tion, and, therefore, it is widely accepted as the method for solving the RTE in the
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radiative MHD codes (Vögler, 2003; Gudiksen et al., 2011) and in spectral radiative
3D codes (Ibgui et al., 2013). A variant of the method with a linearly approximated
source function is implemented in the publicly available version of Mancha3D. The
coefficients for numerical computation of the integral in Eq. 37 are derived in direction-
independent form as in Auer and Paletou (1994). For the higher-order solution and
analysis of errors, see Vitas et al. (in prep).

Equation 37 must be evaluated for any grid point in the simulation domain progres-
sively moving along a ray from the boundary at which the ray enters the domain to
the boundary at which it leaves it. As our simulation domain is decomposed to enable
parallel computing, no ray is fully contained in one of the subdomains and, therefore,
rays are cast from one subdomain boundary to another, and the solution has to be
iterated until the relative differences at the subdomain boundaries become lower than
a specified tolerance (usually the relative error of 10−2 provides sufficiently accurate
solution). Since the subdomain decomposition is uniform in terms of size and shape,
it takes the same number of algebraic operations, i.e. evaluations of Eq. 37, in each
subdomain to reach its boundary. Once the boundary is reached, the intensities at the
boundary are communicated to the next subdomain downwind in the direction of the ray
propagation where these intensities become the initial ones for the next iteration step.
The communications are done per direction, in order to secure that the values in the
corners of the subdomain are properly updated (see enlightening Figure 4.3 of Vögler,
2003).

The global boundary condition is specified at the entering boundary for each ray.
For the rays entering through the top boundary of the domain, we set that Ii(0) = 0,
i.e. we assume that the simulation domain is not illuminated from above. For the rays
entering the domain through the bottom boundary, we set that the intensity is equal to
the source function, Ii(0) = S i(0), which is a very good assumption below the surface.
Finally, for the rays entering through periodic vertical boundaries we assume either the
same (Ii(0) = S i(0)) or that the intensity is known from a previous time-step.

The angular discretization, i.e. the number and the orientation of the rays, can be
defined by the user as a set of nµ pairs (µ, ωµ) where ωµ is the weight of each ray for
the intensity quadrature over the solid angle. The distribution of the rays cannot be
arbitrary. The optimal quadrature “Set A” with 3 rays per octant, proposed by Carlson
(1963), is hard-coded, but it is trivial to replace it with whatever other variant (see, for
example, Jaume Bestard, Štěpán, and Trujillo Bueno, 2021).

The RTE solver computes QR from three quantities: the mass density, the opacity
per mass and the Planck function. The latter two must be precomputed by the user (as
functions of T and either p or ρ) and stored as lookup tables. The solver is ignorant of
the content of the tables, so it is the user’s responsibility to provide physically correct
values. These values may be monochromatic opacities, values of opacity distribution
function, or opacities grouped into statistically representative bins (Nordlund, 1982).
However, note that the implemented integration of the individual contributions is valid
only for the cases of monochromatic opacities and opacity bins, while the integration
over ODF requires a modification of the code to take into account the weights of in-
dividual ODF segments. For a detailed description of the opacity binning method, the
strategies how the bins can be constructed and the intrinsic uncertainties of the method,
see Perdomo Garcı́a et al. (2023).
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The two definitions of QR, Eqs.32 and 33, are analytically interchangeable. How-
ever, as Bruls, Vollmöller, and Schüssler (1999) recognized, the latter is becoming
numerically inaccurate in the optically thick regime and the former in the optically thin.
Following the suggestion by Bruls, Vollmöller, and Schüssler (1999) (see also Vögler,
2003), we compute both solutions and Qi is evaluated as their weighted mean:

Qi = e−τi/τ0 QJ
i + (1 − e−τi/τ0 ) QF

i (39)

where τi is optical depth in the opacity group i and τ0 = 0.1. The final QR is computed
as the sum over i, QR =

∑
i Qi.

2.4. Newton cooling

Alternatively, the radiative losses in Mancha3D may be computed following the New-
ton’s cooling law:

QR = −cv
T1

τR
, (40)

where T1 is the perturbation in the temperature with respect to the equilibrium value,
see Sect. 2.6, τR is the radiative relaxation time (read from a user-specified precomputed
file), and cv is the specific heat at constant volume, computed assuming the equation
of state of an ideal gas. This expression is valid for optically thin disturbances, for
which the wavelength is much smaller than the photon mean free path. The study of
propagation of acoustic waves in a radiating fluid using Newton’s cooling law predicts
an adiabatic propagation for waves with periods significantly shorter than τR, while
in the opposite case acoustic waves propagate isothermally. However, at low enough
frequencies the wavelength of the fluctuations becomes long enough so that the pertur-
bation becomes optically thick, and the Newtonian cooling approximation is no longer
valid.

2.5. Equation of state

The equation of state (EOS) closes the system of MHD equations coded in Mancha3D.
It provides transformation functions between the various thermodynamic (TD) quanti-
ties used in the code. The primary purpose is to compute the gas pressure (required in
the momentum equation) and the temperature (required for the RT module, conduction
and non-ideal MHD terms) from the primary variables density and internal energy. In
addition, the EOS in the code is used to compute the electron density (required for
computation of the non-ideal MHD terms) and to provide inverse TD relations between
T , p, eint and ρ that are required in some of the initial and/or boundary conditions.
In practice, the EOS implementation can vary from trivial to extremely complex. In
Mancha3D the EOS module supports three implementations assuming thermodynamic
equilibrium.

2.5.1. Ideal gas

Under the approximation of the classical ideal gas the relation between the total gas
pressure p, the total number density of the free particles n and the temperature T is:

p = nkBT. (41)
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Or, in terms of the density:

p = ρ
R
µg

T (42)

where R is the universal gas constant and µg is the mean molar mass of the gas. As
there are no interactions between the particles in this approximation, the mean molar
mass of the gas is constant with time and determined only by the chemical composition
of the gas. The internal energy of the monoatomic ideal gas has only the translational
component:

eint =
3
2

nkBT =
3
2

p (43)

2.5.2. Realistic EOS

The ideal gas approximation fails in the stellar atmospheres where particles undergo
dynamic interactions causing the perpetual change of their intrinsic state through molec-
ular formation/dissociation, and atomic and molecular ionization and recombination.
If the TD equilibrium is assumed (so that the distribution of the particles over the
ionization stages and excitation states is given by the Saha-Boltzmann formulae and
that the molecular formation is instantaneous and well described by the instantaneous
chemical equilibrium, effectively an equivalent of Saha-Boltzmann), replacing the ideal
EOS means to find the partial number density of all involved species of particles. This
is numerically challenging and computationally expensive. The problem is even more
complicated at the high densities in the deep convection zone (where processes like
pressure ionization and Coulomb interaction have to be taken into account) and in
the high chromosphere (where the gas and the radiation are out of TD equilibrium, so
the dynamic non-equilibrium ionization/recombination has to be solved). The common
approach to save on computing time in the MHD codes for the stellar atmospheres is
to use precomputed lookup tables of the EOS and to interpolate them for the real-time
input in the code. This approach, feasible only if the TD equilibrium is assumed, is
implemented in Mancha3D.

2.5.3. Electron pressure

The electron pressure needs to be computed in the experiments including the non-ideal
terms (ambipolar diffusion, the Biermann battery). In Mancha3D it can be either pre-
computed and stored in lookup EOS tables with other quantities or it can be computed
on-the-fly from the pressure and the temperature. On-the-fly computations are based on
the work of Vardya (1965) (initial formulation), Mihalas (1967) (implementation) and
Wittmann (1974) (some corrections and algorithm described in details). These routines
solve the EOS for a gas with a given set of abundances. Hydrogen is treated as neutral
H, protons, negative hydrogen ion, neutral and ionized H2 molecule. All other elements
can be neutral or singly ionized. The system of equations then consists of one nuclei
conservation equation for each species and the charge conservation equation for the
electrons. These routines include an iterative solver for a system of non-linear equations
and, thus, they are computationally expensive.
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We note that computing the electron density this way is not fully consistent with the
approximation of ideal gas because the ionization changes the number of particles and,
thus, the mean molar mass, while it is constant in the ideal gas equation.

2.6. Split variables

The variables in the code are split into two parts, equilibrium and non-linear perturba-
tion,

ρ = ρ0 + ρ1; B = B0 + B1; etot = etot,0 + etot,1; (44)
p = p0 + p1; T = T0 + T1; eint = eint,0 + eint,1,

where the background value is denoted with index 0 and the perturbation with index 1.
Velocity has only the perturbation component, v = v1, as it is assumed to be zero in the
state of equilibrium.

The equilibrium state strictly assumes magnetohydrostatic (MHS) equilibrium in the
absence of external forces (v = 0 and S = 0) to be fulfilled,

∇ ·

[(
p0 +

B0
2

2µ0

)
I −

B0B0

µ0

]
= ρ0g. (45)

The set of equilibrium variables used in the initialization phase of a simulations must
be consistent with this definition.

Many different kinds of equilibrium fulfill Eq. 45. For example, a force-free equi-
librium or a potential magnetic field equilibrium, where the gravitationally stratified
thermodynamic variables are independent from the magnetic variables, can be used to
initiate a simulation with Mancha3D. Also, a trivial equilibrium where all variables
with the 0 index are zero is allowed by the code. In that latter case, the full-variable
equations are recovered and solved by the code, despite formally keeping the equations
in their split form.

After subtracting the MHS equilibrium condition, Eq. 45, from the system of Eqs. 1–
4, the following conservative system of MHD equations for non-linear perturbations of
density, momentum, magnetic field and energy is solved by Mancha3D,

∂ρ1

∂t
+ ∇ · (ρv) =

(
∂ρ1

∂t

)
diff
, (46)

∂ρv
∂t
+ ∇ ·

ρvv +
p1 +

B2
1 + 2B1 · B0

2µ0

 I− (47)

B0B1 + B1B0 + B1B1

µ0

]
= ρ1g + S(t) +

(
∂ρv
∂t

)
diff
,

∂etot,1

∂t
+ ∇ ·

[
v
(
etot + p +

B2

2µ0

)
−

B(v · B)
µ0

+
(ηA + η)J⊥ × B

µ0
− (48)

∇pe × B
eneµ0

+ q
]
= (ρg + S(t)) · v + QR +

(
∂etot,1

∂t

)
diff
,

∂B1

∂t
= ∇ ×

[
v × B − ηJ − ηAJ⊥ +

∇pe

ene
− ηH

(J × B)
|B|

]
+

(
∂B1

∂t

)
diff
. (49)
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The use of equations for perturbations instead of the full variables has several advan-
tages for different classes of simulations. First, the terms describing the static model and
those for perturbations can vary by orders of magnitude. Thus, by excluding equilibrium
terms we avoid important numerical precision problems. This method also avoids the
numerical diffusion acting on equilibrium quantities. Secondly, the boundary conditions
are easier to implement for the equations for perturbations (see Section 3.7). Finally, if
the equilibrium is computed numerically, a full-variable simulation may still evolve
despite the zero perturbation due to the numerical errors in the derivatives. This can
cause non-desirable spurious change of equilibrium, compromising the physical simu-
lation. On the contrary, the simulation with a non-zero MHS equilibrium and strictly
zero perturbation will produce strictly zero output in Mancha3D.

The numerical treatment of the full and split variables is slightly different in the code
due to numerical diffusivities, see Section 3.3. The artificial diffusion coefficients are
always computed with respect to the perturbation part only. If a non-zero MHS equi-
librium (split variables) is used, it eliminates the influence of a stratified atmosphere on
the perturbation evolution. Moreover, it often allows using smaller diffusion coefficients
which improves numerical resolution of a problem.

While the system Eqs. 46–49 is solved by default, the code can be configured to solve
fully linear equations, where all terms containing products of two perturbed variables
are explicitly omitted. The linear configuration has been mostly used in simulations
of waves in the solar interior and lower atmosphere (Felipe, Crouch, and Birch, 2013;
Felipe et al., 2016; Felipe, Braun, and Birch, 2017).

3. Numerical techniques

In this section we discuss the time integration methods, available spatial discretization
schemes and other numerical features related to the code stability and robustness. As
the code is multi-purpose, it does not have any predefined boundary condition, and it is
the user’s responsibility to treat the boundaries according to the particular setup.

3.1. Time integration schemes

For efficient usage of the computational resources several numerical schemes are im-
plemented in Mancha3D. By default, the governing equations 46–49 are evolved by
means of a memory-saving variant of the explicit RK scheme 3. Two more integration
schemes can be used to deal with the non-ideal terms in the energy and induction
equations, Eqs. 48 and 49. The Battery term is usually small in solar atmosphere,
and does not require modifications of the MHD integration time step. On the other
hand, under certain conditions, numerical treatment of the ambipolar, Ohmic and Hall
terms can become troublesome. The ambipolar term becomes dominant from the mid-
dle chromosphere upwards, and also in regions with strong magnetic field (Khomenko
et al., 2014a). Due to its parabolic nature, it can strongly limit the time step. The Hall

3This scheme does not fulfill all the mathematical conditions to belong to the RK family, so rigorously
speaking it should be called as ”explicit multistage scheme”. Still, for historical reasons we keep calling it as
”the RK scheme” in the paper.
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term can become dominant in the middle photosphere in regions with weaker fields. It
introduces dispersion, produces whistler waves and, if not treated properly, it can lead to
numerical instabilities (see e.g., Tóth, Ma, and Gombosi, 2008). To handle those terms,
Mancha3D can use the STS (for ambipolar and Ohmic term) and HDS (for the Hall
term) schemes (O’Sullivan and Downes, 2006, 2007) to overcome time step limitations.
Both techniques can be used together by applying the Strang operator splitting (Strang,
1968); the implementation of these schemes in Mancha3D (González-Morales et al.,
2018) is briefly summarized below.

3.1.1. Memory-saving time integration scheme

The system of Eqs. 46–49, written in conservative form, can be represented as:

∂u
∂t
= R(u) = −∇F(u) + S(u), (50)

where the operator R(u) is the sum of the divergence of fluxes −∇F(u) and of the source
terms, S(u). The vector u stands for the primary variables: u = [ρ1, ρv, etot,1,B1](r, t).

The Eqs. 46–49 are advanced in time using a variant of the explicit RK scheme that
is written in a compact form as:

u(k) = u(n) + αk∆tR
(
u(k−1)

)
, k = 1, . . . ,m, (51)

u(n+1) = u(k=m), (52)

where u(n+1) corresponds to the solution at tn+1 = tn + ∆t, and u(k) is an intermediate
solution at substep k, the coefficients αk are computed using the expression,

αk =
1

m + 1 − k
(53)

where m is the order of the scheme; the same method was adopted in the code MU-
RaM (Vögler, 2003; Vögler et al., 2005). The scheme is memory efficient as it is not
necessary to keep the solutions from intermediate stages. The 2nd order, two-stage
scheme recovers the midpoint method, however the higher order schemes deviate from
the standard ones, lowering the actual accuracy order.

The multistage RK scheme is usually described by a Butcher tableau, formed by
several coefficients (Butcher, 1987). If one requires the method to have a certain order,
the coefficients must fulfill several conditions derived from a Taylor expansion. The
coefficients (53) always match the 1st and 2nd order conditions (see Sect. 31 in Butcher,
1987), while for higher order not all the conditions are fulfilled. For example, for the
3rd order scheme the coefficients (53) satisfy five of the six conditions (one condition of
the 3rd order is not fulfilled); for the 4th order scheme only seven restricting conditions
out of eleven are fulfilled (three conditions of the 4th order and one condition of the 3rd
order are not fulfilled). Hence this scheme with four or more stages does not have the
desired order of accuracy reaching only the 2nd one; this makes the 3rd order scheme
computationally more efficient as compared to the higher order schemes of this stencil.
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We run a series of tests to check the accuracy order of the scheme. For a smooth
solution the accuracy order can be estimated as,

A = log2

(
u∆t − u∆t/2

u∆t/2 − u∆t/4

)
, (54)

where u∆t, u∆t/2, and u∆t/4 are the solutions computed with the corresponding time steps
indicated by the indices. Using this expression we obtain A between 2 and 2.1 for the
2nd order scheme and A between 2.5 and 2.8 for the 3rd order scheme, depending on
the reference time step. The 4th order scheme produces A ≈ 2.1, which is in line with
the discussion above. For this reason, by default, Mancha3D uses the 3rd order scheme
to solve the non-ideal MHD equations, which is explicitly written as follows:

u(1/3) = u(0) +
∆t
3
R(u(0)),

u(1/2) = u(0) +
∆t
2
R(u(1/3)), (55)

u(1) = u(0) + ∆tR(u(1/2)).

Still, user is free to use a different scheme order.

3.1.2. STS operator

The STS scheme is used to speedup simulations which involve the Ohmic and ambipo-
lar terms. The Ohmic term is usually small in solar conditions, but it is included in the
STS operator for some particular applications. These terms appear only in the energy
and magnetic field equations, so the Eq. 50 is written as

∂w
∂t
= S(w) = LOhm(w) + LAmbi(w), (56)

where the vector w corresponds to either w = [B1, etot](r, t) or w = [B1, eint](r, t). The
components of the operator S(w) are defined as,

S(B1) = −∇ ×
[
ηJ + ηAJ⊥

]
, (57)

S(etot) = −∇ ·
[ (η + ηA)J⊥ × B

µ0

]
,

S(eint) = ηJ2 + ηAJ⊥2.

For the STS scheme the stability is imposed at the end of a bigger step called super-
step, ∆tSTS. The ∆tSTS is calculated as a sum of sub-steps τ j, obtained using the modified
Chebyshev polynomials (Alexiades, Amiez, and Gremaud, 1996).

τ j = ∆tdiff

[
(ν − 1) cos

(
2 j − 1
NSTS

π

2

)
+ 1 + ν

]−1

; ∆tSTS =

NSTS∑
j=1

τ j, (58)

where the minimum time step∆tdiff is mainly determined by the ambipolar term (∆tAmbi =

min(∆x2,∆y2,∆z2)/ηA)). The parameter NSTS is the number of sub-steps, and ν is a
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damping parameter associated with the Chebyshev polynomials. The values of the pair
of the parameters (NSTS, ν) controls the stability, accuracy and speed of the method.
By selecting ν close to unity the super-step becomes smaller and the method is more
accurate, but the gain from applying the STS scheme decreases. By selecting ν close to
zero the system may become unstable at some point, but the benefit from applying the
STS is larger (see González-Morales et al., 2018, for details).

The time update by the STS operator can be written as

w(r, tn+1) = w(r, tn) +
NSTS∑
j=1

τ j
∂w(r, t)
∂t

∣∣∣∣
tn+

∑ j−1
k=1 τk
, (59)

where tn+1 = tn + ∆tSTS. The STS scheme is a first order accurate. In Mancha3D,
we consider the STS scheme as an “Eulerian” first-order step of our multi-step RK
scheme, and we reach, for example, the 3rd order accuracy by applying three calls to the
STS scheme. Thus, the complete temporal scheme for the STS operator can be written
similarly to Eqs. (51) but, in this case, using the operator S(w) and its corresponding
time step ∆tSTS:

w(k) = w(n) + αk∆tSTSS
(
w(k−1)

)
, k = 1, ...,m, (60)

w(n+1) = w(m),

with αk given by Eq. (53).

3.1.3. HDS operator

The HDS operator only solves the Hall term in the induction equation. It is designed
by O’Sullivan and Downes (2006) to overcome the problems originated by a skew-
symmetric Hall term dominated system, and it can be written in conservative form
as

∂b
∂t
= H(b) (61)

where the vector b is the conserved variable B1(r, t) andH(b) is the Hall term operator,

H(b) = −∇ ×
[
ηH

(J × B)
|B|

]
. (62)

The term H(b) is treated as a usual MHD term, except that the update of the mag-
netic field components is done using all the information available at the moment. The
following steps are preformed in the HDS scheme,

B(k)
1x = B(n)

1x + αk∆tHallH
(
B(k−1)

1x , B
(k−1)
1y , B

(k−1)
1z

)
, (63)

B(k)
1y = B(n)

1y + αk∆tHallH
(
B(k)

1x , B
(k−1)
1y , B

(k−1)
1z

)
,

B(k)
1z = B(n)

1z + αk∆tHallH
(
B(k)

1x , B
(k)
1y , B

(k−1)
1z

)
, k = 1, . . . ,m,

B1
(n+1) = B1

(m). (64)
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where∆tHall is the time step imposed by the Hall term,∆tHall = 2/
√

27 min(∆x2,∆y2,∆z2)/ηH

(O’Sullivan and Downes, 2007). The HDS operator advances in time by repeating the
calculation of the Equations (63) NHDS times, so that ∆tHDS = NHDS∆tHall. If the HDS
scheme is used together with the STS one, their global time step is set to be equal,
∆tSTS = ∆tHDS.

3.2. Spatial discretization

The computational domain is discretized with three-dimensional Cartesian grid which
is constant in time. By default, the code uses uniform grid which can have different
grid spacing in different directions. It perfectly fits performing realistic simulations of
the solar and stellar atmospheres, as modeling of turbulent convective flows requires
fine uniform grid in all directions. However, other tasks, like wave propagation can
have very elongated computational domain in one direction. To handle such problems
more efficiently a non-uniform grid in z-direction is implemented, allowing for a finer
resolution where it is needed and a coarser grid in the regions where plasma is more
homogeneous.

3.2.1. Uniform grid

For the case of uniform grid two different schemes for spatial derivatives are imple-
mented:
(1) a central difference, 4th-order accurate scheme using five-point stencil. In this case,
the first derivative in the direction s = {x, y, z} is computed as,(

∂F(u)
∂s

)
i
=

1
12∆s

(
8F(u)i+1 − 8F(u)i−1 − F(u)i+2 + F(u)i−2

)
; (65)

(2) a 6th-order accurate scheme with ten-point stencil, used in the Stagger-code (Magic
et al., 2013; Nordlund and Galsgaard, 1995). In this case the derivatives are computed
in two steps, using interpolation to a half-grid point:

F(u)i+1/2 = a1

(
F(u)i + F(u)i+1

)
+

b1

(
F(u)i−1 + F(u)i+2

)
+ (66)

c1

(
F(u)i−2 + F(u)i+3

)
,

and then taking derivative,(
∂F(u)
∂s

)
i
=

a2

∆s

(
F(u)i−1/2 − F(u)i+1/2

)
+

b2

∆s

(
F(u)i−3/2 − F(u)i+3/2

)
+ (67)

c2

∆s

(
F(u)i+5/2 − F(u)i+5/2

)
,
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where the coefficients are:

a1 =
150
256

; b1 = −
25

256
; c1 =

3
256

; (68)

a2 = −
2250
1920

; b2 =
125
1920

; c2 = −
9

1920
. (69)

It should be mentioned that the second derivatives are computed by taking the first
derivative twice for both uniform and non-uniform grids.

3.2.2. Non-uniform grid

A non-uniform grid can be constructed in many different ways, depending on particular
setup. As Mancha3D is a multipurpose code, building an efficient non-uniform grid is
left to the user. Below, we consider an example of modeling acoustic wave propagating
from the photosphere to the corona. In Figure 1 we plot a temperature distribution in
the solar atmosphere together with the vertical grid spacing. The temperature profile is
taken from the VALC model (Vernazza, Avrett, and Loeser, 1981) and is expanded to
corona with a constant temperature of 106 K. The grid is defined to have the highest
resolution around the transition region where the thermodynamic quantities exhibit
the strongest gradients. On the other hand, in the case of non-uniform grid the local
truncation error is affected by the grid stretching factor (∆zi+1/∆zi), it should not deviate
from unity by more than 20% (Fletcher, 1988; Jianchun, Pope, and Sepehrnoori, 1995),
where unity stands for uniform grid. Therefore it is important to have a smooth and
gradual variation of the grid spacing similar to the one shown in the inset of Figure 1,
where the grid factor is less than about 10%, i.e. 0.9 < ∆zi+1/∆zi < 1.1

The derivatives in z-direction are computed using a central-like scheme of 4th or
6th order; for example, the 1st derivative of the 4th order accuracy is computed with
five-point stencil as, (

∂F(u)
∂s

)
i
=

j=i+2∑
j=i−2

a jF(u) j, (70)

where coefficients a j are computed for particular non-uniform grid using Taylor ex-
pansion. As the grid is constant in time, they are computed only once at the initializa-
tion stage, therefore taking derivatives in the case of non-uniform grid does not have
additional computational costs.

The benefit of using a non-uniform grid is twofold. First, it allows using smaller
number of grid points as compared to the corresponding uniform grid covering the same
computational domain. Second, depending on the particular setup, the computational
time step can be noticeably larger than the one from the uniform grid. For example,
if we consider a non-magnetic subsonic flow, the time step is limited by the sound
speed, cS, which varies along z-direction. In case of the uniform grid the time step is
proportional to ∆t ∝ ∆z/cS,max, where cS,max corresponds to the highest sound speed
from the hot corona region, and it limits the time step in the whole domain. In the
case of the non-uniform grid, the grid spacing also varies and the global time step is
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Figure 2. Vertical velocity profiles at time moment t = 398 s for the three grids shown in Figure 1; the
shaded region denotes the location of the transition region with the finest resolution in the non-uniform grid
case.

computed from the local values,

∆t ∝
[
∆zi

cS,i

]
min
, (71)

where the index i runs over all the grid points. Hence, having a larger grid spacing in
the coronal region removes the limitation set by high sound speed in the case of the
uniform grid. Still, one should keep in mind that the efficiency of the fixed non-uniform
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Table 1. Comparison between the three runs of the acoustic wave test. The time step is determined by
advection and its Courant–Friedrichs–Lewy condition, below the averaged value is shown.

Parameter Run1 Run2 Run3

Grid spacing [km] 1 2 1-3.1
Number of grid points 5000 2500 2500
Time step [s] 0.0035 0.0068 0.0076
Number of iterations 115786 58509 52906
Run wall-clock time [s] 324 126 114

grid strongly depends on the simulation setup and, in particular, how accurately one can
predict where the refinement of the grid is needed.

To demonstrate the advantages of the non-uniform grid we performed a test sim-
ulation of an acoustic wave propagation in a 1D atmosphere, shown in Figure 1. The
atmosphere spans over 5 Mm from the photosphere to the corona. The wave is triggered
at the bottom boundary by an analytical solution of the vertical velocity vz, density ρ1,
pressure p1 (together with consistent perturbations in the remaining thermodynamic
quantities), with a period of 15 sec and a starting amplitude of 1 m s−1, see Appendix
A4 in Felipe, Khomenko, and Collados (2010). The PML (see Sect. 3.7) at the top
boundary damps all the perturbations, preventing possible reflections.

We performed three runs with different grids, two uniform, one with 5000 grid points
and ∆z = 1 km and another with 2500 points and ∆z = 2 km and one non-uniform, with
the grid spacing shown in Figure 1. In Figure 2 we plot the velocity profiles computed
for the three grids, together with the location of the transition region. Qualitatively
all three profiles look similar and before reaching the transition region the difference
between them is negligible. After the wave passes through transition region the velocity
profile computed with the non-uniform grid is much closer to the one obtained with
the finest uniform grid (solid blue and dashed green lines) than the profile computed
with the same number of points, but uniformly distributed. It is important to notice that
above the transition region, the non-uniform grid spacing is considerably larger than
both uniform grid spacing, but velocity evolution is still much closer to the run with the
finest uniform grid than the one with the coarser grid.

The computational details of these three runs are summarised in Table 1. From this
table we see that the simulation with the non-uniform grid runs slightly faster as com-
pared to the one with the coarser uniform grid and the same number of grid points. That
is due to the local computation of the time step, as described above. The ”Run1” with
the fine uniform grid run takes ∼ 2.8 more time due to both larger amount of grid points
and smaller time step which requires to take more time steps to reach t = 400 s. For all
three runs we used same number of CPUs, which means twice the load for the first run
with the finest uniform grid.
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3.3. Artificial diffusion

In astrophysical plasmas, both the hydrodynamic and the magnetic Reynolds number
(associated to the Ohmic diffusion) usually have very large values, making the char-
acteristic lengths in which the viscosity and diffusivity act too small to be resolved.
To prevent the exponential grow of numerical noise at these small scales, Mancha3D
uses artificial equivalents of the physical viscosity, magnetic diffusivity and thermal
conduction, as well as a completely artificial diffusion term in the continuity equation.
This approach resembles the one described in Stein and Nordlund (1998); Caunt and
Korpi (2001); Vögler et al. (2005). We generically refer to all these terms as “artificial
diffusivities”.

The diffusion term in the continuity equation, Eq. 46, is defined as,(
∂ρ1

∂t

)
diff
=

∑
i

∂

∂xi

[
νi(ρ1)

∂ρ1

∂xi

]
, (72)

where νi is the diffusion coefficient, computed as explained in Sect. 3.4. The index
i counts the three Cartesian directions. Note that in general the operator applies to
the non-linear density perturbation, ρ1. However, in the zero-equilibrium case it is
equivalent to applying it to the full variable since ρ = ρ1.

The diffusion term in the equation of motion, Eq. 47, is defined as,(
∂ρv
∂t

)
diff
= ∇ · τ, (73)

where τ is viscous stress tensor with components:

τi j =
1
2
ρ

(
ν j(vi)

∂vi
∂x j
+ νi(v j)

∂v j

∂xi

)
. (74)

In the induction equation, Eq. 49, the diffusion term is,

(
∂B1

∂t

)
diff
= −∇ × ε, (75)

where ε plays the role of an equivalent electric field vector with three components (x,
y, z):

εx =

(
νy(B1z)

∂B1z

∂y
− νz(B1y)

∂B1y

∂z

)
,

εy =

(
νz(B1x)

∂B1x

∂z
− νx(B1z)

∂B1z

∂x

)
,

εz =

(
νx(B1y)

∂B1y

∂x
− νy(B1x)

∂B1x

∂y

)
. (76)

Here, again, if a non-zero MHS equilibrium is used, the operator defined by Eq. 75
applies to the magnetic field perturbation B1, not to the full vector B0 + B1, while for
the zero-equilibrium case it applies to the full variable, B = B1.
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The artificial diffusivity term in the total energy equation is composed of three com-
ponents: viscous and Ohmic heating terms, and artificial heat conduction (Vögler et al.,
2005), (

∂etot,1

∂t

)
cond

=
∑

i

∂

∂xi

(
ρνi(T1)

∂cpT1

∂xi

)
, (77)(

∂etot,1

∂t

)
Ohm

= ∇ · (B × ε), (78)(
∂etot,1

∂t

)
visc
= ∇ · (v · τ). (79)

where cp is the specific heat at constant pressure. In the internal energy equation,
the artificial conductivity term remains the same, while the other two are modified
accordingly, (

∂eint

∂t

)
Ohm

= ∇ · (ε · J), (80)(
∂eint

∂t

)
visc
= τ : ∇v, (81)

where : stands for tensor double contraction.

3.4. Artificial diffusion coefficients

There are three contributions to the artificial diffusivity coefficients ν in Mancha3D. For
a quantity u (scalar or vector) and direction i, the artificial diffusivity coefficient can be
written as:

νi(u) = νconst
i (u) + νhyper

i (u) + νshock
i (u). (82)

The first term νconst stands for the part constant in time,

νconst
i (u) = cconst(u) (cS0 + vA0)∆xiFconst(x, y, z), (83)

where Fconst is a user-defined profile that accounts for the spatial variation of the con-
stant diffusivity. The purpose of this term is to enhance the constant diffusion in a
specific region, for example close to a domain boundary, while keeping it low else-
where. The term (cS0 + vA0) is the sum of the sound speed and the Alfvén speed
computed from the initial MHS atmosphere. The coefficients cconst(u) are the amplitudes
of the diffusivity of different primary variables u = [ρ1, ρv, e1,B1].
The variable (hyper) diffusivity term νhyper is defined as:

ν
hyper
i (u) = chyper(u) (v + cS + vA)Hi(u)∆xi Fhyper(x, y, z). (84)

Similar to the constant counterpart, the coefficients chyper(u) are the diffusivity ampli-
tudes of the various variables. The term (v + cS + vA) is computed using the local flow,
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and the sound and Alfvén velocities. The hyper-diffusion core term Hi(u) is computed
as,

Hi(u) =
max3 |3(uh+1 − uh) − (uh+2 − uh−1)|

max3 |uh+1 − uh|
, (85)

where max3 denotes the maximum over 3 adjacent points (Vögler, 2003). This ratio is
defined as a mask, trimmed between 0 and 1, that takes large values at places where
small-scale variations with large amplitudes are present, but keeping low values else-
where. The function Fhyper is a user-specified profile, allowing to enhance the amplitude
of the hyper diffusion in specific predefined regions, similarly to how Fconst modifies
the amplitude of the constant diffusivity.

The shock diffusivity term νshock takes high values in the regions where there are
strong gradients with sudden variations in the velocity between nearby points. It is pro-
portional to the absolute value of the divergence of the velocity only in those locations
where there are converging flows, being zero in the rest of the domain (Vögler, 2003):

νshock
i (u) = cshock(u)(∆xi)2|∇ · v|, ∇ · v < 0,

νshock
i (u) = 0, ∇ · v ≥ 0. (86)

The parameter cshock(u) is the amplitude of the shock diffusivity that can be set inde-
pendently for each of the variables u.

3.5. Filtering

In some types of simulations, for example those corresponding to wave propagation, a
high diffusion is not desirable since it modifies the wave amplitudes. At the same time,
a low diffusion can not always prevent the development of high frequency noise. In
such cases, Mancha3D can perform an additional filtering of small wavelengths, which
can be applied with a user-defined frequency. We use the filtering function defined in
(Parchevsky and Kosovichev, 2007) ,

ufilt = u(x) −
3∑

m=−3

dmu(x + m∆x), (87)

where u is the variable before filtering and ufilt is the one after filtering. The filter can be
applied in each of the three spatial directions independently. The coefficients dm, related
to the Fourier image of the original filtering function, take values,

dm = [d−3, d−2, d−1, d0, d1, d2, d3] (88)

= [−1, 6,−15, 20,−15, 6,−1]/64.

The application of the filter at a given time step can be considered as changing a
variable by,

∂u
∂t
=

u(x) − ufilt(x)
∆t

=

3∑
m=−3

dmu(x + m∆x)/∆t. (89)
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Figure 3. The second-order density perturbation as a function of height, in a 1D experiment of a monochro-
matic Alfvén wave propagation from the bottom photosphere upwards in a stratified solar atmosphere
permeated by a constant magnetic field. Solid black line: no filtering is applied. Dashed red line: filtering
applied.

Therefore, filtering operation can be viewed as an additional type of the 6th order
diffusion, (see the Appendix in Popescu Braileanu, Lukin, and Khomenko, 2023),

∂u
∂t
= νF

6∇
6u, (90)

where νF
6 is the diffusion coefficient. In the finite difference representation the 6th

derivative of u on the seven-point stencil is approximated with,

∇6u =
∂6u
∂x6 =

1
∆x6

3∑
m=−3

cmu(x + m∆x), (91)

with cm = 64dm. Then the diffusion coefficient νF
6 introduced by the filter can be

evaluated as,

νF
6 =

∆x6

64∆t
, (92)

where ∆x is the grid spacing along x.
Figure 3 demonstrates the main effect of filtering. It shows the second-order density

perturbations appearing as a consequence of the non-linear coupling in the experiment
where an Alfvén wave was excited at the bottom photospheric boundary of a 1D simu-
lation domain (see Appendix 5 in Felipe, Khomenko, and Collados, 2010, for the details
of this test). In the absence of the filtering (black curve), there is a high-frequency point-
to-point noise visible over the main oscillation. The noise amplitude is affected by the
constant artificial diffusion (see the Alfven speed contribution in Eq. 83), which has the
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lowest value at the bottom of the domain and grows with height due to exponential pro-
file of the background density. The filtering removes numerical noise while preserving
the main oscillation and its amplitude (red curve). On the other hand filtering should
not be applied too often, as it introduces small inconsistency to the governing equations
and may also overshoot original solution in case of large gradients like shocks. As a
rule, applying filtering every 20–50 iterations produces stable simulations maintaining
physical gradients and diminishing noise in the solution. Finally, it is interesting to no-
tice that the filtering fits perfectly the concept of split variables. According to Hesthaven
(1998), a high frequency noise filtering can improve the long-time stability of the PML,
see Sect. 3.7. In Mancha3D this approach is shown to work successfully for simulations
of MHD waves.

3.6. Divergence of magnetic field

In Mancha3D no specific treatment is applied to control the divergence of the mag-
netic field. The split variable strategy greatly facilitates maintaining the divergence-free
condition. In the simulations with non-zero equilibrium background, the ∇ · B = 0 is
analytically fulfilled in the initial state and it remains so through the whole simulation
since the initial state is not evolved. Since the code operates in perturbations, it allows
keeping ∇ · B = 0 condition to the zero order. We also find that our centered numerical
scheme allows keeping ∇ · B = 0 to a good degree of precision in the simulations with
full variables (zero background).

In order to check the behaviour of ∇ · B = 0 we performed a 3D simulation of
the Rayleigh-Taylor instability (RTI), where a dense plasma lies on top of a less-dense
plasma with typical solar atmosphere parameters for the density and temperature. We
use a relatively small setup of 120 × 120 × 320 grid points in x-y-z directions with
h = ∆x = ∆y = ∆z = 10 km. Using the ideal gas equation, the stable configuration
in a gravitational field corresponds to the adiabatic profiles of density, pressure and
temperature,

ρ = ρ0

(
1 −
γ − 1
γ

ρ0g

p0
z
)1/(γ−1)

, (93)

p = p0

(
1 −
γ − 1
γ

ρ0g

p0
z
)γ/(γ−1)

, (94)

T = T0

(
1 −
γ − 1
γ

ρ0g

p0
z
)
, (95)

where g = 274 m s−1 is the gravity at the Sun surface, γ = 5/3 is the adiabatic factor,
ρ0 = (ρtop + ρbot)/2, T0 = 104 K, and p0 = (R/µg)ρ0T0 are the reference density,
temperature and pressure, ρbot = 10−8 kg m−3, ρtop = 10−7 kg m−3, µg = 10−3 kg mol−1

is the molar mass. The RTI is triggered by a half-cosine perturbation of vertical velocity
set at the initial interface between the heavy and light plasmas. It leads to a single
uprising bubble in the middle of the domain and following spikes at its sides, as shown
in Figure 4, top left panel. Initially there is no magnetic field in the setup. The field is
generated by the Biermann battery mechanism, as the instability evolves (Khomenko
et al., 2017; Martı́nez-Gómez et al., 2021).
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Figure 4. Top panel: density (left) and magnetic field (right) distributions in a simulations of Rayleigh-Taylor
instability at time=5.5 s. Bottom panel: time-evolution of the maximum and volume averaged values of the
magnetic field and its absolute divergence multiplied by the grid step, h, in logarithmic scale.

Figure 4 shows the distributions of the density and the generated magnetic field in
the nonlinear stage of the instability. At the bottom panel, we plot the time evolution
of the maximum and volume averaged values of the magnetic field module and its
divergence in a logarithmic scale; the magnetic field divergence is taken as its absolute
value multiplied by the grid spacing, so that it has the units of magnetic field strength.
First of all, this plot does show the existence of non-zero magnetic field divergence. At
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Figure 5. Magnetic field modulus (top), and its absolute divergence (middle) distributions over the horizon-
tal surface at photospheric base, in realistic simulations of small-scale solar dynamo, as those reported in
Khomenko et al. (2018) but with a horizontal/vertical resolution of 5/3.5 km, respectively. Bottom panel:
time-evolution of the maximum and volume averaged values of the magnetic field and its absolute divergence
multiplied by the grid step, h, in logarithmic scale.
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the early stage of the instability, ∇ · B grows together with the growth of the magnetic
field. Around the time of 6 seconds, the bubble reaches the top boundary. By that time
the flow becomes much more turbulent leading to further generation of the magnetic
field by both Biermann battery and local dynamo effects. The sharp increase in the ∇·B
terms is determined by the non-periodic boundary condition at the top of the domain,
which is in this case modelled as a simple insulator and produces most of the magnetic
field divergence. It is important to notice, that in the highly turbulent stage (t > 7
seconds) the growth of the divergence saturates both in its maximum and its average
values. Furthermore, the absolute values of h∇ · B is about 10 orders of magnitude
smaller than the corresponding value of the generated magnetic field, which clearly
indicates that its effect on the flow evolution is negligible.

We also computed the magnetic field divergence in a time series of realistic sim-
ulations of small-scale solar dynamo, similar to those reported in Khomenko et al.
(2018), but done at a different spatial resolution of 5/3.5 km horizontally/vertically.
In this simulation the magnetic field was initially seeded through the Biermann battery
term in in the induction equation and it was then amplified by the action of dynamo
in the near surface layers (Khomenko et al., 2017). An example of this computation
is given in Figure 5. The upper panel reveals a typical network-like pattern of small-
scale magnetic structures coinciding with intergranular lanes at the solar surface, with a
mean strength slightly above 0.012 T. Similarly to the RTI case, the middle panel shows
a presence of a non-zero divergence. The locations of highest divergence correlate with
the locations of the highest magnetic field. The divergence values in this case are not
as small as for the RTI simulation, but nevertheless they keep at the value of ≈2 orders
of magnitude smaller than the magnetic field generated by the small scale dynamo. The
value of the divergence is constant in time in the stationary phase, see the bottom panel.
Given the complexity of this realistic simulation, compared to the case of the RTI, we
consider these values acceptable.

3.7. Split variables and PML

Splitting variables into equilibrium and perturbation parts stems from the very origin of
the Mancha3D code to study wave propagation in the solar atmosphere (Khomenko and
Collados, 2006; Felipe, Khomenko, and Collados, 2010). It allows preserving poten-
tially large contrast between oscillating and background quantities with a good numeri-
cal accuracy. In fact, any setup can be run with either split or full variables. In the latter
case the equilibrium is set to zero and everything is computed as the perturbation part.
The structure of the equations solved by Mancha3D is specifically designed to use the
split variables together with the PML boundary conditions (Berenger, 1994; Hu, 1996;
Parchevsky and Kosovichev, 2007). These PML boundaries are very effective for wave
simulations to prevent spurious wave reflections, absorbing perturbations within about
10–20 grid points. The PML can be used at all the boundaries of the computational
domain.

Playing a role of non-reflecting boundaries the PML should not be considered as a
type of boundary conditions as it usually takes more grid points and it requires solving
the modified governing equations in the PML. Following the PML strategy, the MHD
equations in Mancha3D are reshaped in order to add a term that damps the perturbations
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that reach the boundary, separately for each direction. In a 3D geometry, the schematic
representation of the system of equations, Eq. 50, is expanded as follows,

∂u
∂t
+
∂H(u)
∂x

+
∂G(u)
∂y

+
∂K(u)
∂z

= S(u), (96)

where u ≡ [ρ1, ρv, e1,B1] is the vector that contains the conserved variables; the vectors
H, G and K are the fluxes written separately for each direction, and S represents the
source terms. The conserved variables u are split into three components in such a way
that u = u1 + u2 + u3 and also S(u) = S1(u) + S2(u) + S3(u) and the system of MHD
equations is split into a set of three coupled, one dimensional equations:

∂u1

∂t
+
∂H(u)
∂x

+ σx(x)u1 = S1(u), (97)

∂u2

∂t
+
∂G(u)
∂y

+ σy(y)u2 = S2(u), (98)

∂u3

∂t
+
∂K(u)
∂z

+ σz(z)u3 = S3(u), (99)

where σx, y, z are damping coefficients along each direction. Notice that in the case of
solving 2D equations, the splitting is done into 2 components, but the same philosophy
applies otherwise. In the 1D case, the PML layer simply converts into a usual absorb-
ing sponge layer. The damping coefficients are non-zero only in the PML part of the
domain, and are zero in the physical domain.

Theoretically, a PML with constant damping σx, y, z does not produce spurious reflec-
tions for the incident plane waves for any angle of incidence and at any frequency. How-
ever, numerically, reflections may appear when σx, y, z have a steep gradient (Berenger,
1994). To solve this problem Mancha3D includes smooth variations in the absorp-
tion coefficients from small values at the interface between the PML medium and the
physical domain to large values at the outer boundary,

σx = ax
cS0 + vA0

∆x

( x − xPML

xPML

)2
, (100)

σy = ay
cS0 + vA0

∆y

(y − yPML

yPML

)2
, (101)

σz = az
cS0 + vA0

∆z

( z − zPML

zPML

)2
, (102)

where ax, ay and az are constants controlling the damping amplitude, and xPML, yPML

and zPML are the thickness of the PML domain in each spatial direction. In a typical
calculation, Mancha3D needs a PML of 10 – 20 grid points. The coefficients ax, ay and
az depend on each particular simulation, and vary between 0 and 1. For low frequency
waves, corresponding to longer wavelengths, Mancha3D requires wider and weaker
PMLs, compared to the high-frequency waves. When the vertical wavelength of the
wave becomes comparable or larger to the size of the PML, it becomes harder to absorb
and eventually may produce reflections (such situation is typical in coronal conditions
where Alfvén waves are present). Too wide or too strong PMLs can become numerically
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Figure 6. Top: profiles of the density perturbations and horizontal velocity as a function of height in a sim-
ulation of a linearly polarized monochromatic Alfvén wave propagation in a stratified solar-like atmosphere,
permeated by a vertical constant magnetic field of a strength Bz = 500 G. Bottom: total density profile plotted
for the upper part of the domain for the same setup computed using the split (red dotted line) and full (solid
black line) variables.

unstable. The PML formulation can also become unstable in long simulation runs be-
cause of the accumulation of the high-frequency noise coming from waves propagating
tangentially to the boundary.

We illustrate the advantage of the split variables and the PML layer by using the sim-
ulations of linearly polarized Alfvén wave propagation in a stratified solar atmosphere
permeated by a constant vertical magnetic field, Bz = 500 G; the wave is triggered by
a velocity oscillation at the bottom of the domain with period of 10 s and amplitude of
100 m s−1. The top panel in Figure 6 shows a snapshot of the density and velocity, as
a function of height, together with the location of the PML at the top boundary of the
computational domain (grey shaded area). Perturbations in density appear as a second-
order effect due to the nonlinear evolution of the MHD equations. The background
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Figure 7. 2D snapshot of the vertical velocity in the simulation of acoustic wave propagating through the
solar-like atmosphere with a PML boundary conditions on the top and on the sides.

density varies from 2.7 ·10−4 kg m−3 at the bottom to 4.7 ·10−7 kg m−3 at the top bound-
ary, while the amplitude of the density perturbations do not exceed 2 · 10−8 kg m−3, i.e.,
10−104 times smaller than the equilibrium values. It is easily seen that the PML (which
in 1D case coincides with a sponge layer) effectively suppresses all the perturbation at
the top boundary, allowing for a stable long simulation.

The same simulation can be set up with the full variables and a simple outflow
boundary condition at the top, as the PML boundary condition cannot be applied in this
case. However, such a configuration crashes when the wave approaches the top part of
the domain with a relatively small density. The total density profile for this case is shown
by a black solid line at the bottom panel of Figure 6, together with the same quantity
for the simulation with the split variables (red dotted line). The unstable evolution in
this case is attributed to the fact that the numerical treatment leads to small growing
deviations from the equilibrium even if the initial MHS profile is set analytically. Con-
sequently, in the full variable case, the total density inevitably evolves departing from
its equilibrium state. Furthermore, possible reflections from the top boundary may also
affect the flow, so that at some point the density may become negative and the simulation
crashes.

The action of the PML layer in a 2D configuration is demonstrated by an example of
a monochromatic acoustic wave propagation through a solar-like stratified atmosphere.
The equilibrium profiles are the same as in the previous Alfvén test, but without mag-
netic field. The wave is triggered in the middle of the bottom boundary with 20 s period
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Table 2. PizDaint node characteristics. L1 and L2 caches belong to each processor while L3 cache is shared
within a socket (6 CPUs) and RAM is shared within a node

Number of CPU Number of sockets L1 cache L2 cache L3 cache RAM CPU speed

12 2 64 kB 256 kB 30 MB 192 GB 2.3 GHz

and 10 m s−1 initial amplitude; the top boundary condition has 25 grid points PML and
the sides have 15 grid points PML. Figure 7 shows the 2D distribution of the vertical
velocity at time moment t = 450 s, when the wave propagates in a quasi-steady way. It
clearly demonstrates that all the perturbations at the domain boundaries are successfully
damped by the PML.

4. Parallel efficiency

Parallel performance is an important issue of every modern computer code, however
it is rarely discussed in regular scientific papers. Mancha3D is fully parallelized with
the MPI standards for distributed memory machines (Hager and Wellein, 2011). The
computation domain can be decomposed in all three directions. The output files of the
HDF5 format (The HDF Group, 2000-2010) are read and written in parallel by all the
processors.

We explore the parallel efficiency of the code by using a simulation of the Kelvin-
Helmholtz instability with two counter-directed flows. This setup has the advantage
to be easily scalable in all three dimensions. For the sake of saving computational
resources, all the tests are performed without non-ideal effects. As a rule, the inclusion
of the ambipolar diffusion or the Hall term can increase the overall computational time,
however the additional treatment of those terms is not expected to noticeably affect the
parallel efficiency.

It should be emphasized that the obtained results are specific for a particular ma-
chine, with its unique configuration of the CPUs, cache memory size, bandwidth, file
system, etc. All the tests have been performed on the PizDaint supercomputer of the
Swiss National Supercomputer Center; its details are summarized in Table 2. Neverthe-
less, they provide a general understanding of the code performance and expectation of
its behavior on other machines. Below we discuss in detail the strong and weak scaling
of the code including the effect of saving snapshots.

4.1. Strong scaling

Strong scaling implies a fixed size problem run on a single processor and compared to
running on many processors (Gustafson, Montry, and Benner, 1988). The main purpose
of the strong scaling tests is twofold: to demonstrate parallel efficiency and to determine
the optimal size of the decomposition subdomain for further simulations. By default the
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code speedup is usually estimated as:

Speedup =
t1
tN
, (103)

where t1 is the wall-clock time for running the code on a single CPU and tN is the
time for running the same setup on N processors. In ideal case, for instance, doubling
the number of processors decreases the code execution time by 50 percent. There are
several technical issues to keep in mind while performing strong scaling tests:

• Due to the limited memory per CPU, it is impossible to run a relatively big size
job on a single CPU.

• The possible range for an efficient number of processors becomes limited, as the
decomposition subdomain size should be considerably larger than the number of
cells to exchange.

• The architecture of a modern supercomputers implies a large number of nodes,
each of them with many CPUs, where the actual computation takes place; the
number of CPUs per node varies from a few to several dozen. For a proper scaling
it is important to avoid the comparison of the code performance within the node
with the one across the nodes. For this reason, scaling tests are performed with
respect to a single node (or even several nodes for big setups) and not a single
CPU.

• The strong scaling efficiency may exhibit non-smooth behavior due to varying
relation between the amount of memory required for a subdomain and the CPU
cache memory. As a result, it becomes very much machine dependent. Further-
more, different machines have different sets of compilers, different hardware con-
nections which inevitably affect running the code as a serial or as a parallel ver-
sion.

• As a rule no snapshots are saved in the scaling tests in order to exclude parallel
input/output which is a separate issue.

Keeping in mind the above reasoning we performed several sets of parallel runs with
different 2D setups. In all the cases, the simulation runs for 10000 iterations with a
different number of CPUs. No snapshots are saved in these tests as we are interested in
the parallel efficiency of the code and want to exclude other hardware effects like I/O
speed. Figure 8 shows the results for the strong scaling test, for different sizes of the
computational domain (2880 × 1800, 4320 × 4800 and 1152 × 900 points, from top to
down). The left vertical axis shows the subdomain size computed by each CPU and the
right axis shows the actual parallel speedup; the x-axis stands for the number of CPUs.

We start our analysis from the top panel of Figure 8 with the setup of medium domain
size. The speedup is scaled with respect to 12 CPUs which corresponds to a single full
cluster node. Here the strong scaling reveals several interesting aspects in its behaviour.
The first striking feature is that for a relatively small number of CPUs (< 2000) the
code overperforms the ideal scaling exhibiting superlinear speedup (Gusev and Ristov,
2014). For example, when the number of CPUs doubles from 48 to 96 the wall-clock
time drops 2.6 times. It should be noted that the overperformance is related to the slope
of the curves (the red and the blue ones) and to the fact that one curve is above the other
one. Starting from around 1000 CPUs due to increase in the number of communications
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Figure 8. Strong scaling for 2D setup of different sizes: medium (2880×1800) - upper panel, large
(4320×4800) - middle panel and relatively small (1152×900) - low panel. Solid blue squares lines show
the numerical results, dashed red lines stand for the ideal scaling, green dotted lines with circles represent
the subdomain size, and the shaded areas depict an optimal subdomain size with respect to the CPU cache
memory.
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between CPUs the parallel efficiency is degrading and its slope becomes less than 1. At
about 2400 CPUs there is an inflection point followed by a counterintuitive growth in
the parallel speedup, almost reaching the ideal slope. Finally with the further increase
of the CPUs number the communication cost grows significantly and speedup becomes
negative.

In order to get a better insight the superlinear speedup and to explain the inflection
point, it is necessary to know the internal architecture of the computer node. Each node
contains several processors, each processor has its own L1 and L2 cache memories, and
the L3 cache memory is shared among several processors within one socket and finally
the RAM which is common for all the processors of the node. The L1 and L2 caches
are fast but small memories, usually in total less than 300-500 Kb, while the L3 cache
is much larger, 20-30 Mb. When a processor needs specific data, it searches for it in
the L1 cache, then in the L2 cache, in the L3 cache and finally in the RAM. The access
time increases by order of magnitude while addressing the L3 cache as compared to
the L1 cache and addressing the RAM takes much longer (Stengel et al., 2015). When
several CPUs work in parallel, they are competing for getting the memory access in the
L3 cache within each node. Consequently, the larger is the subdomain handled by each
processor, the harder is to get an access to the data for all the processors of the compute
node. As the subdomain size decreases, more and more processors are able to access
the L3 cache memory simultaneously, which, in turn, decreases the overall wall-clock
time. In Figure 8 we depict the subdomain size treated by each CPU (the left axis and
the green circle dotted curve) to show its correlation with the code parallel efficiency.
Initially (left side of the plot with a very few nodes), each CPU needs more memory
than available at the L3 cache (which is shared by several CPUs), and it frequently ac-
cesses ”slow” RAM. In the worst case the CPUs within one socket work in a serial way
rather than in parallel. Strictly speaking, under such conditions the code underperforms
within each node but overperforms in overall. Reducing the subdomain size leads to
the situation when more and more CPUs can access the fast L3 cache in parallel, and
explains the initial code overperformance.

The noticeable speedup growth after the inflection point at about 2400 CPUs means
that the computational subdomain treated by a node becomes small enough so that it fits
the L2+L3 cache memories, and at the same time it is still large enough to exceed the
exchanges between CPUs. In particular, on PizDaint machine, each processor has about
2.5 Mb of the L2+L3 cache memories, which corresponds to the subdomain size 50×50
grid points treated by each CPU (the green area in Figure 8). So when the subdomain
size is 50×50 or below, all the CPUs of a node are able to treat their data simultaneously.
For larger number of CPUs, the communication overhead decreases the overall parallel
efficiency and the strong scaling shows the saturation and even degrading behaviour.

All the above clearly indicates that the code is strongly memory bound (Stengel
et al., 2015). It means that the CPU speed is not the limiting factor for effective parallel
computation. It also reduces the impact of MPI parallelization and exchange between
subdomains. For Mancha3D, high memory demands stem from the usage of a large
number of additional variables needed for the split variables and the PML treatment.
Nevertheless, such a behaviour should be inherent to most MHD codes regardless of
the numerical algorithms used.

We have performed two more sets of runs to clarify the reasons of parallel efficiency
degradation. The middle panel of Figure 8 shows the result for a larger 2D domain,
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Figure 9. Strong scaling for a 3D setup. The format of the figure is the same as Figure 8.

4320 × 4800; such a big domain does not fit a single node and the speedup is scaled
with the computing time for 50 nodes (600 CPUs). One can see that even with 5760
CPUs the subdomain size treated by each processor is larger than the optimal one. Due
to communications the parallel efficiency drops just to 70% which is still a very good
result for several thousand CPUs run. If we keep increasing the number of processors
the speedup will eventually become negative.

The bottom panel of the Figure 8 shows the opposite extreme when the computa-
tional setup is relatively small, 1152 × 900. The parallel speedup overperforms for a
small number of CPUs and reaches its peak around 600 CPUs, when the subdomain
size fits the node cache memory. With further increase of the CPUs the subdomain
becomes smaller increasing the relative amount of exchanged data between CPUs. It
leads to a strong degradation of the parallel speedup already at 1000 CPUs.

Finally in Figure 9 we show the strong scaling for a 3D setup in the same format. The
cache-optimal size remains the same and, inevitably for 3D, stays well below any possi-
ble subdomain size. In the 3D setup the number of communication grows as there is one
extra dimension for the data exchange, and the speedup degrades faster than the one of
the big 2D setup. The overall speedup drops by 30% at 2000 CPUs and exceeds 50% at
5000-6000 CPUs, which is an acceptable code performance4. It is important to notice
that the smallest subdomain size corresponds to 303; decomposing to smaller sizes is
possible but it will be less efficient due to the increase in communication overheads.

4.2. Weak scaling

Another typical situation in scientific computing is to increase the computational do-
main while keeping the same resolution. The code performance for a fixed domain
size per processor but increasing the overall size of the problem and the number of
processors is referred to as the weak scaling. Unlike the strong scaling, the weak scaling

4For example, for PizDaint applications it is required to show parallel efficiency of at least 50%.
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Figure 10. Weak scaling efficiency for a 3D setup with a subdomain size of 40 × 40 × 40 points. The two
curves correspond to running the jobs with and without saving snapshots, the numbers stand for the snapshot
size.

shows how the code parallel performance degrades when the number of processors
increases, regardless the subdomain size treated by individual processor. Ideally the
execution time should not change with the increase of the number of the processors, but
due to communications between processors and other cache memory issues there will
be inevitably some increase in overall wall-clock time. The weak scaling efficiency can
be evaluated in the same way as the speedup given by Eq. 103.

Figure 10 presents a weak scaling for a 3D setup with a moderate subdomain size.
The blue squares curve shows an impressive weak scaling, degrading only by 20%
at more than 6000 processors. The weak scaling efficiency demonstrates monotonous
behaviour as compared to the strong scaling, it does not depend on the subdomain size
as each node has the same load regardless the total CPU number.

Saving snapshots is an inevitable part of every simulation. We have performed ad-
ditional runs to get a better insight into how the snapshot writing affects the code’s
behaviour. In general, the saving delays depend on the snapshot size, the saving fre-
quency, file system, etc. The red circles line depicts the case when the snapshots are
saved every 25 iterations, leading to a significant increase of the overall wall-clock
time. Such a behaviour should be inherent to weak scaling tests, since an increase in
the number of processors leads to a corresponding increase in the total domain size
of the problem. As expected, when the snapshot size is relatively small (< 1 Gb), the
delays due to its saving are negligible, meaning that it takes much less time than the
computations. In Mancha3D the snapshot size of 1 Gb corresponds, for example, to a
large 2D setup, like 4000×4000 points, or to a moderate 3D domain of 400×400×100
points. For a bigger computational domain, for example, 800× 400× 500, the snapshot
size exceeds 10 Gb and it takes ∼ 20 seconds to save it on the PizDaint machine. Hence,
if it is necessary to save such snapshots very frequently, the writing time can become the
dominant one in the overall execution time. In particular, for the dimensions mentioned
above, saving snapshots every 25 iterations doubles the overall time of the simulation,
as compared to the run without snapshots.
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Thus we conclude that the Mancha3D code is effectively scalable up till several
thousands of the CPUs. For 2D simulations there is an optimal subdomain size allowing
significant gain in the parallel performance. For 3D cases it is more efficient to run
the code with larger subdomains, avoiding sizes smaller than 25 − 30 grid points in
each direction. It should also be kept in mind that frequent saving of big snapshots
increases the overall running clock time, regardless the number of processors used in
the simulation.

5. Conclusion and perspectives

In this paper we describe in detail the equations and numerical methods used in the
Mancha3D code. Special attention has been paid to specific features of the code, like
split variables, the PML boundary condition and the enhanced stability due to the
filtering technique used. Several test simulations have been used to demonstrate the
performance of these specific features. We note that the overall performance of the
code’s numerical scheme has been reported in Felipe, Khomenko, and Collados (2010),
and, therefore we do not repeat those tests in the current paper. Neither we discuss
scientific simulations, since all of the results have been widely reported, as discussed in
the Introduction. These simulations range from those of helioseismic wave propagation
below sunspots, non-ideal effects due to neutrals, large and small-scale prominence
dynamics, or waves in coronal structures. As the current paper shows, the code shares
several features with other widely used numerical codes, but it also has its unique
features, and it has been specially fine-tuned for simulations of wave propagation in
static magnetic structures and for realistic simulations of magneto-convection.

The parallel efficiency of the code has been thoroughly studied in this paper for the
first time. It has revealed a non-trivial strong scaling behaviour for 2D setups, which
has been properly explained from the hardware viewpoint. The weak scaling exhibits
almost perfect properties, although it is affected by the snapshot saving frequency, due
to significant large file size, especially in 3D simulations. Both scalings clearly show
that the code is memory bound, which should be a common property of MHD codes.
As a consequence of being memory bound, the strong scaling has a different behavior
for 2D and 3D setups. For the former (smaller) case there is an optimal subdomain size
of ∼ 2000 grid points which allows fitting the data to the CPU memory with reasonable
exchange load between subdomains. On the contrary, for the 3D setup one should keep
the subdomains larger than 30x30x30 grid points to avoid high exchange overheads. In
this case the code can effectively run on several thousand CPUs.

The code is still expanding with new features. The thermal conduction module,
described in Sect. 2.1, is one of the newest modules that has been added allowing
modeling the dynamics of the hot solar corona. The static non-uniform grid in the
vertical direction, described in Sect. 3.2.2, is another recent implementation that will
also contribute to the studies of the solar corona as well as other simplified setups,
where there is a need for a larger domain. The long term upgrades involve including
a more complex model for chromospheric radiative transfer, as well as implementa-
tion of a finite-volume based numerical scheme. This will allow expanding the code’s
capabilities for realistic simulations of the chromospheric and coronal dynamics.
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Overall, Mancha3D is a versatile code that can be easily reconfigured for different
scientific setups, from idealized to the realistic ones. Setting a simulation does not in-
volve changing of the main code, but only requires from a user to modify a few external
files specifying boundary and initial conditions, compiled together with the code, as
well as the control file. Therefore Mancha3D can be used by someone with relatively
little experience in high-performance computing.
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Wójcik, D., Murawski, K., Musielak, Z.E.: 2019, Partially Ionized Solar Atmosphere: Two-fluid Waves and
Their Cutoffs. 882(1), 32. DOI. ADS.

Wray, A.A., Bensassi, K., Kitiashvili, I.N., Mansour, N.N., Kosovichev, A.G.: 2015, Simulations of Stellar
Magnetoconvection using the Radiative MHD Code ‘StellarBox’. arXiv e-prints, arXiv:1507.07999. DOI.
ADS.

Xia, C., Teunissen, J., Mellah, I.E., Chané, E., Keppens, R.: 2018, Mpi-amrvac 2.0 for solar and astrophysical
applications. The Astrophysical Journal Supplement Series 234(2), 30. DOI.

Zhao, J., Felipe, T., Chen, R., Khomenko, E.: 2016, Tracing p-mode Waves from the Photosphere to the
Corona in Active Regions. 830(1), L17. DOI. ADS.

Zhdanov, V.M.: 2002, Transport Processes in Multicomponent Plasma. Plasma Physics and Controlled
Fusion 44(10), 2283. DOI. ADS.

SOLA: output.tex; 11 October 2023; 12:28; p. 46

http://dx.doi.org/10.1007/BF00156952
http://adsabs.harvard.edu/abs/https://ui.adsabs.harvard.edu/abs/1974SoPh...35...11W
http://dx.doi.org/10.3847/1538-4357/ab3224
http://adsabs.harvard.edu/abs/https://ui.adsabs.harvard.edu/abs/2019ApJ...882...32W
http://dx.doi.org/10.48550/arXiv.1507.07999
http://adsabs.harvard.edu/abs/https://ui.adsabs.harvard.edu/abs/2015arXiv150707999W
http://dx.doi.org/10.3847/1538-4365/aaa6c8
http://dx.doi.org/10.3847/2041-8205/830/1/L17
http://adsabs.harvard.edu/abs/https://ui.adsabs.harvard.edu/abs/2016ApJ...830L..17Z
http://dx.doi.org/10.1088/0741-3335/44/10/701
http://adsabs.harvard.edu/abs/https://ui.adsabs.harvard.edu/abs/2002PPCF...44.2283Z

	Introduction
	Equations
	Treatment of the heat conduction
	Non-ideal terms
	Radiative transfer equation
	Newton cooling
	Equation of state
	Split variables

	Numerical techniques
	Time integration schemes
	Spatial discretization
	Artificial diffusion
	Artificial diffusion coefficients
	Filtering
	Divergence of magnetic field
	Split variables and PML

	Parallel efficiency
	Strong scaling
	Weak scaling

	Conclusion and perspectives

